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Four Color Theorem

Definition

A graph is planar if it has a plane embedding (a plane drawing without
edge crossing).

Euler’s formula for planar graphs

|F |+ |V | = |E |+ 2

Corollary

|E | ≤ 3|V | − 6

δ(G ) ≤ 5

Theorem

Every planar graph is 5-colorable.

Qiqin Xie (Fudan University) Hajós Coloring Conjecture January 6th, 2021 3 / 22



Four Color Theorem
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Four Color Theorem

Four Color Theorem (Appel & Haken, 1977)

Every planar graph is 4-colorable.

Theorem (Kuratowski, 1930)

Let G be a graph. TFAE

G is planar.

G contains no K5-minor or K3,3-minor.

G contains no K5-subdivision or K3,3-subdivision.

Note: H − subdivision ⊂ H −minor.
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Four Color Theorem

Remark

χ(K3,3) = 2, χ(K5) = 5.

Question

What’s the upper bound of the chromatic number of graphs with no
K5-minor/subdivision?
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Hadwiger’s Conjecture

Conjecture (Hadwiger, 1943)

For any positive integer k , every graph containing no Kk+1-minor is
k-colorable.

Survey paper by Paul Seymour:
https://web.math.princeton.edu/∼pds/papers/hadwiger/paper.pdf

Survey talk by Zixia Song:
https://www.bilibili.com/video/BV1Ho4y1Z7f7
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Hajós’ Conjecture - Survey

Characterization of nonplanar graphs with no K3,3-subdivision

The chromatic number of graphs with no K3,3-subdivision is at most 5

Conjecture (Hajós, 1961)

For any positive integer k , every graph containing no Kk+1-subdivision is
k-colorable.

Counterexamples (Catlin, 1979)

Hajós’ conjecture fails for k ≥ 6.

Theorem (Erdős & Fajtlowicz, 1981)

Hajós’ conjecture fails for almost all graphs.
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Hajós’ Conjecture - Hajós’ Graphs

The conjecture is true for k ≤ 3.

Remains open for k = 4 and k = 5.

Goal: solve the conjecture for k = 4!!!

Definition

We say that a graph G is a Hajós graph if

(1) G contains no K5-subdivision,

(2) G is not 4-colorable, i.e., χ(G ) ≥ 5, and

(3) subject to (1) and (2), |V (G )| is minimum.
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Hajós’ Conjecture - Minimality of Hajós’ Graphs

Question

How to reduce the size of G?

Operations

(1) Delete a few vertices

(2) Contract edges

(3) Identify 2 vertices that are not adjacent

(4) Separate G into several pieces
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Hajós’ Conjecture - Connectivity

Kelmans-Seymour conjecture / Theorem (He, Wang & Yu, 2018+)

Every 5-connected nonplanar graph contains a K5-subdivision.

Hajós’ Graph is not 5-connected (by Kelmans-Seymour conjecture and the
Four Color Theorem)

Theorem (Yu & Zickfeld, 2006)

Hajós’ Graph must be 4-connected.

Theorem (Sun & Yu, 2016)

Let S be a 4-cut of a Hajós’ Graph G . Then G − S has exactly 2
components.
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Hajós’ Conjecture - Connectivity
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Hajós’ Conjecture - Main Results

Definition (Separation)

A separation in a graph G consists of a pair of subgraphs G1, G2, denoted
as (G1,G2), such that G = G1 ∪ G2, E (G1 ∩ G2) = ∅, and, for i = 1, 2,
V (Gi )− V (G3−i ) 6= ∅ or E (Gi ) 6= ∅. The order of the separation is
|V (G1 ∩ G2)|, and (G1,G2) is said to be a k-separation if its order is k .

Definition ((G , S)-planar)

Let S ⊆ V (G ). A disc representation of a graph G is a drawing of G in a
closed disc without edge-crossing. We say that (G , S) is planar if S are
vertices in G such that G has a disc representation with S on the
boundary of the disc.

Theorem (Xie, Xie, Yu & Yuan, 2021+)

No Hajós graph has a 4-separation (G1,G2) such that (G1,V (G1 ∩ G2)) is
planar and |V (G1)| ≥ 6.
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Hajós’ Conjecture - Future Work

Conjecture

No Hajós graph contains K−
4 as a subgraph.
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The End
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