Hajós' Coloring Conjecture

Qiqin Xie

Fudan University
qqxie@fudan.edu.cn

January 6th, 2021

Overview

(1) Four Color Theorem
(2) Hajós Coloring Conjecture

- Survey
- Progress on Hajós' Conjecture
- Future work on Hajós' Conjecture

Four Color Theorem

Definition

A graph is planar if it has a plane embedding (a plane drawing without edge crossing).

Euler's formula for planar graphs
$|F|+|V|=|E|+2$

Corollary

- $|E| \leq 3|V|-6$
- $\delta(G) \leq 5$

Theorem

Every planar graph is 5-colorable.

Four Color Theorem

Four Color Theorem

Four Color Theorem (Appel \& Haken, 1977)

Every planar graph is 4-colorable.

Theorem (Kuratowski, 1930)

Let G be a graph. TFAE

- G is planar.
- G contains no K_{5}-minor or $K_{3,3}$-minor.
- G contains no K_{5}-subdivision or $K_{3,3}$-subdivision.

Note: H - subdivision $\subset H$ - minor.

Four Color Theorem

K_{5}

$K_{3,3}$

K_{5} subdivision

Remark

$$
\chi\left(K_{3,3}\right)=2, \chi\left(K_{5}\right)=5 .
$$

Question

What's the upper bound of the chromatic number of graphs with no K_{5}-minor/subdivision?

Hadwiger's Conjecture

Conjecture (Hadwiger, 1943)

For any positive integer k, every graph containing no K_{k+1}-minor is k-colorable.

Survey paper by Paul Seymour: https://web.math.princeton.edu/~pds/papers/hadwiger/paper.pdf Survey talk by Zixia Song: https://www.bilibili.com/video/BV1Ho4y1Z7f7

Hajós' Conjecture - Survey

- Characterization of nonplanar graphs with no $K_{3,3}$-subdivision
- The chromatic number of graphs with no $K_{3,3}$-subdivision is at most 5

Conjecture (Hajós, 1961)

For any positive integer k, every graph containing no K_{k+1}-subdivision is k-colorable.

Counterexamples (Catlin, 1979)

Hajós' conjecture fails for $k \geq 6$.

Theorem (Erdős \& Fajtlowicz, 1981)

Hajós' conjecture fails for almost all graphs.

Hajós' Conjecture - Hajós' Graphs

- The conjecture is true for $k \leq 3$.
- Remains open for $k=4$ and $k=5$.
- Goal: solve the conjecture for $k=4!!!$

Definition

We say that a graph G is a Hajós graph if
(1) G contains no K_{5}-subdivision,
(2) G is not 4-colorable, i.e., $\chi(G) \geq 5$, and
(3) subject to (1) and (2), $|V(G)|$ is minimum.

Hajós' Conjecture - Minimality of Hajós' Graphs

Question

How to reduce the size of G ?

Operations

(1) Delete a few vertices
(2) Contract edges
(3) Identify 2 vertices that are not adjacent
(4) Separate G into several pieces

Hajós' Conjecture - Connectivity

Kelmans-Seymour conjecture / Theorem (He, Wang \& Yu, 2018+)

Every 5-connected nonplanar graph contains a K_{5}-subdivision.
Hajós' Graph is not 5-connected (by Kelmans-Seymour conjecture and the Four Color Theorem)

Theorem (Yu \& Zickfeld, 2006)

Hajós' Graph must be 4-connected.

Theorem (Sun \& Yu, 2016)

Let S be a 4 -cut of a Hajós' Graph G. Then $G-S$ has exactly 2 components.

Hajós' Conjecture - Connectivity

Hajós' Conjecture - Main Results

Definition (Separation)

A separation in a graph G consists of a pair of subgraphs G_{1}, G_{2}, denoted as $\left(G_{1}, G_{2}\right)$, such that $G=G_{1} \cup G_{2}, E\left(G_{1} \cap G_{2}\right)=\emptyset$, and, for $i=1,2$, $V\left(G_{i}\right)-V\left(G_{3-i}\right) \neq \emptyset$ or $E\left(G_{i}\right) \neq \emptyset$. The order of the separation is $|V(G 1 \cap G 2)|$, and $\left(G_{1}, G_{2}\right)$ is said to be a k-separation if its order is k.

Definition ((G, S)-planar)

Let $S \subseteq V(G)$. A disc representation of a graph G is a drawing of G in a closed disc without edge-crossing. We say that (G, S) is planar if S are vertices in G such that G has a disc representation with S on the boundary of the disc.

Theorem (Xie, Xie, Yu \& Yuan, 2021+)

No Hajós graph has a 4-separation $\left(G_{1}, G_{2}\right)$ such that $\left(G_{1}, V\left(G_{1} \cap G_{2}\right)\right)$ is planar and $\left|V\left(G_{1}\right)\right| \geq 6$.

Proof Sketch

Proof Sketch

Proof Sketch

Proof Sketch

Hajós' Conjecture - Future Work

Conjecture

No Hajós graph contains K_{4}^{-}as a subgraph.

References

E．Aigner－Horev，Subdivisions in apex graphs，Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 82 （2012）83－113．
Re．Appel and W．Haken，Every planar map is four colorable．Part I．Discharging， Illionois J．Math． 21 （1977）429－490．

K．Appel，W．Haken and J．Koch，Every planar map is four colorable．Part II． Reducibility，Illionois J．Math． 21 （1977）491－567．

K．Appel and W．Haken，Every planar map is four colorable，Contemporary Math． 98 （1989）．

围 P．Catlin，Hajós＇graph－coloring conjecture：variations and counterexamples， J．Combin．Theory，Ser．B 26 （1979）268－274．
國 G．A．Dirac，A property of 4－chromatic graphs and some remarks on critical graphs， J．London Math．Soc．，Ser．B 27 （1952）85－92．
固 P．Erdős and S．Fajtlowicz，On the conjecture of Hajós，Combinatorica 1 （1981） 141－143．
D．He，Y．Wang and X．Yu，The Kelmans－Seymour conjecture I：special separations，Submitted．

References

D．He，Y．Wang and X．Yu，The Kelmans－Seymour conjecture II：2－vertices in K_{4}^{-}， Submitted．
國 D．He，Y．Wang and X ．Yu，The Kelmans－Seymour conjecture III：3－vertices in K_{4}^{-}， Submitted．

D．De，Y．Wang and X．Yu，The Kelmans－Seymour conjecture IV：A Proof， Submitted．
䍰 K．Kawarabayashi，Unpublished（2010）．
R A．K．Kelmans，Every minimal counterexample to the Dirac conjecture is 5－connected，Lectures to the Moscow Seminar on Discrete Mathematics（1979）．

國 A．K．Kelmans，Graph expansion and reduction，Algebraic methods in graph theory， Vol．I（Szeged，1978），Colloq．Math．Soc．János Bolyai，25，North Holland， Amsterdam－New York，1981，317－343

國 A．E．Kézdy and P．J．McGuiness，Do $3 n-5$ edges suffice for a subdivision of K_{5} ？ J．Graph Theory 15 （1991）389－406．
K．Kuratowski，Sur le problème des courbes gauches en topologie，Fund．Math． 15 （1930）271－283（in French）．

References

埥 J．Ma，R．Thomas，and X．Yu，Independent paths in apex graphs，Unpublished （2010）．
（1．J．Ma，Q．Xie，and X．Yu，Graph containing topological H，J．Graph Theory 82 （2016）121－153．
（1998） 569－595．
图 N．Robertson，D．P．Sanders，P．D．Seymour and R．Thomas，The four colour theorem，J．Comb．Theory Ser．B． 70 （1997）2－44
P．D．Seymour，Private communication with X．Yu．
國 Y．Sun and X．Yu，On a coloring conjecture of Hajós，Graphs and Combinatorics 32 （2016）351－361．
R．Wagner，Uber eine Erweiterung eines Satzes von Kuratowski，Deutsche Math． 2 （1937）280－285（in German）．
風 X．Yu，Subdivisions in planar graphs，J．Combin．Theory Ser．B． 72 （1998）10－52．
R．Yu and F．Zickfeld，Reducing Hajós＇coloring conjecture to 4－connected graphs，

The End

